

JUNIOR HIGH SCHOOL EDUCATION: MATHS TEACHING AND LEARNING

【教材分析】

北师大版初中数学教材中 数学建模的多维度分析

韩惠丽 谢雨婧

【摘 要】建模观念是《义务教育数学课程标准(2022 版)》提出的学生核心素养之一. 基于此课标,以"内容 分布、问题情境、问题表述、建模过程要素呈现"四个维度为框架,对北师大版初中数学教材中数学建模的内容 进行系统分析,并对我国初中数学教学提出建议.

【关键词】数学建模;模型观念;义务教育数学课程标准;教材分析

《义务教育数学课程标准(2022年版)》(以下简 称《新课标》) 中明确指出数学核心素养的构成之一 是会用数学的语言表达现实世界,其最主要的表现为 模型观念,它体现了数学思想及其广泛的应用性[1]. 与《义务教育数学课程标准(2011年版)》中提到的 模型思想相比[2],《新课标》中的模型意识和模型观 念对学生的要求更加具体化,强调初中阶段更侧重于 培养学生的观念、思想和能力,明确提出模型观念即 是"学生对运用数学建模解决实际问题要有清晰的 认识"[3]. 模型观念作为初中数学九大核心素养之 一,其重要地位不言而喻,因此引起了越来越多的数 学教育研究者的关注.

当前对中小学数学建模的研究并不少,但大多是 对数学建模的教与学或数学建模教学价值的研究,关 于数学建模的教材、评价研究较少,尤其初中教材中 数学建模内容的研究少之甚少[4]. 教材是教师教和学 生学的主要依据,所以教材建设是教育改革的重中之 重. 北师大版初中数学教材是根据《义务教育数学课 程标准(2011年版)》要求,结合数学学习的特点和学 生的认知发展规律精心编制的. 教材中建模内容的设 计与编排对学生建模观念的培养、建模思想的渗透、 建模能力的提高等有着直接影响,而《新课标》又对 数学建模的相关内容提出新的要求,所以有必要对现 有教材中数学建模相关内容进行分析与研究,以期能 够对初中数学教师的教学有所启示与借鉴.

一、数学教材中建模内容的多维度分析

依据新课标中对建模素养和教材内容的要求,采 用定性与定量相结合的方法对北师大版初中数学教 材(2012年版b共六册)納数学建模内容进行系统分hts re内容与历史文化内容融为数学课程,特别指出"模型

析,从教材中数学建模相关内容的分布特点、素材情 境的选择、问题的设置类型以及模型观念在教学中的 呈现过程这几个方面进行研究.

(一)内容分布维度

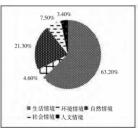
《新课标》指出模型观念要贯穿初中数学课程始 终,分布于四大学习领域:"数与代数""图形与几何" "统计与概率""综合与实践". 但数学建模在教材中 的呈现方式多样,本文只选取明显符合模型观念定义 的相关章节,从数学建模在各年级的分布和在数学课 程四大领域的分布这两个角度进行分析.

为统计方便,将"综合与实践"模块中每一个活 动作为一章. 由此统计出六册教材中的所有章节数共 60章,其中与建模思想、建模观念、数学建模能力等 直接相关的内容共30章,占初中教材内容的50%,七 年级、八年级、九年级都是10章内容,数量均等,每个 年级上下册出现数学建模内容的章节数都分别为6 章和4章,说明北师大版的初中数学教材从始至终贯 穿了数学建模内容,具体内容分布见下页表1.

通过进一步的统计分析发现,数学建模在"数与 代数"领域所占的章节数最多,约占总建模内容的 36.7%;其次是"综合与实践"领域,约占总建模内容 的 33.3%; 而"图形与几何"和"概率与统计"领域共 占总建模内容的30%, 这与新课标中对四大领域的 建模内容的要求基本一致.

(二)问题情境维度

为更好地了解数学教材中建模内容的情境,将从 两个角度对其进行分析:一是"情境类型".由于新课 标指出学科融合对义务教育的必要性,提倡把跨学科


教材中数学建模具体内容分布 表 1

_				
	数与代数	图形与几何	概率与统计	综合与实践
七年级	有理数 及其运算	三角形	数据的收 集与整理	制作一个尽可能 大的无盖长方体 形盒子
	代数式	生活中的 轴对称	概率初步	关注人口老龄化
	一元一次方程 变量之间的关系			
八年级	一次函数	勾股定理		哪一款手机资费 套餐更合适
	二元一次方程 组一元一次不 等式与一元一 次不等式组	位置与坐标		哪个城市夏天更 热生活中的"一 次模型"
	分式与分式 方程			平面图形的镶嵌
九年级	一元二次方程	图形的相似		
			概率的进一步认识	制作视力表
	反比例函数	直角三角形 的边角关系		池塘里有多少 条鱼
	二次函数			哪种方式更合算 设计遮阳篷

观念有助于开展跨学科主题学习". 建模内容的情境 类型分为:生活情境,包括人们的工作、学习、家庭、社 交、娱乐、衣食住行等:环境科学情境,包括气温、气 候、自然灾害、自然现象等:自然科学情境,包括物理、 化学、生物、天文和医学等:社会科学情境,包括经济 学、心理学、人类学、社会学等:人文科学情境,包括文 学、历史、哲学、艺术等[5]. 二是"情境真实性". 因为 教材的编写既要考虑到数学建模真实性的特点,还要 考虑学生现有的处理现实及复杂问题数据的能力,所 以参考 Debba 三水平的情境真实性水平分析框架,分 为构造式(情境涉及信息均为人为构造)、准真实(信 息部分真实,部分由人为构造)、完全真实(信息完全 真实,均来自现实生活)三种水平[6].

对教材中的数学建模内容情境类型分类统计结果 如图 1. 从结果来看,教材中数学建模内容情境多样,但 绝大部分来自日常生活. 这表明教材注重让学生从熟

数学的兴趣,自然科学情境类型占21.30%,比重较大, 这体现了数学与其他学科之间的联系. 特别是在学生 接触到物理知识后.教材会选用该学段所学过的物理 情境作为问题背景. 例如. 初三时学生刚学习了导体的 电流与导体电阻的关系,教材中反比例函数概念一节 就以这一物理背景作为切入点,让学生经历运用物理 知识建立数学模型的过程,体会数学模型的价值,领悟 数学建模应用的广泛性. 但是. 目前的教材中缺少环境 情境、社会学科、人文学科的相关内容.

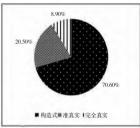


图 1 数学建模内容情境类型

统计发现教材中绝大部分数学建模情境都是构 造式情境,占70.6%,问题的情境和数据都经过人为 简化,学生不需要筛选、处理数据,直接使用问题提供 的必要数据. 准真实情境占 20.5%, 所选择的问题既 能让学生感受到数学在现实生活中的作用,又让学生 感觉问题不会太难. 仅有 8.9% 为完全真实情境,问 题是现实世界中真实存在的,它可以使学生的体验更 真实,但所提供的数学条件和数据不足,需要学生自 己收集所需数据并分析处理,如探索出租车如何计价 的函数模型等.

综合各方面分析来看,初中数学教材中数学建模 的情境虽然丰富,但真实性低,真正意义上的数学建 模问题较少. 因此教师需要根据新课标对数学建模的 要求, 编制更多有助于培养学生数学建模观念的实际 问题.

(三)问题表述维度

《数学建模教学与评估指南》针对初中的数学建 模,提出了五项指导原则,其中一条是"建模是开放 且复杂的"[7]. 问题的开放性、问题解决方法的多样 性有利于学生创新思维的培养. 为充分了解教材中问 题的创设为学生留有的创造余地,依据徐斌艳关于问 题表述类型的分类对数学建模相关内容进行分类统 计[8].统计结果如下页图 2.

从结果可见目前教材中开放性建模内容极少,多 处看似开放性的建模内容最终也被教材设计为常规 的数学应用题,限制学生的思维.比如,八年级上册 悉的生活场景中体会数学的应用价值Q激发学生学动hts res综合与实践S:中的#哪件款季机资费更合适",教材

JUNIOR HIGH SCHOOL EDUCATION: MATHS TEACHING AND LEARNING

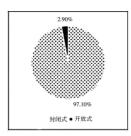


图 2 问题类型

为降低学生探索的难度,故提示"分别确定三种套餐 下相应的资费和主要通话实践之间的函数关系式,并 解释所得函数表达式中一次项系数 k 和常数项 b 的 实际意义"[9]. 但这一提示限制了学生理解问题的方 向,反而使问题变成一个常规的数学应用题,

(四)数学建模过程要素呈现维度

根据新课标对建模观念的要求,从"现实问题抽 象为数学问题—构建数学模型—计算求解—结果解 释、检验和优化"这四个环节考察教材中数学建模内 容的呈现过程. 新课标还强调"教材内容要着重关注 核心素养发展的阶段性"[10]. 因此分别对三个年级中 与数学建模内容相关的章节进行分析,发现每个年级 都依据课标,在平时的教学中反复地渗透模型思想, 并随着学生认知结构的不断完善,教材逐步提高对学 生建模能力的要求.

(1)七年级数学建模过程要素呈现

七年级的学生正处于具象思维向抽象思维的过 渡阶段,所以七年级主要培养学生具体情境符号化能 力,并从简单的实际问题中初步地感知数学建模的基 本过程. 例如"整式及其加减"一章, 教材既设置一些 具体的情境,让学生学会从具体情境中抽象出代数 式,建立符号意识;还让学生通过赋予代数式实际背 景,体会模型是数学与现实世界的联系,"一元一次 方程"通过丰富的问题情境让学生建立方程模型解 决实际问题,从而体会方程的模型思想,并初步体会 数学化的过程.

(2)八年级数学建模过程要素呈现

从整体上看,八年级强调让学生经历完整的数学 建模过程,并着重培养学生模型构建的能力,这与新 课标中所提及的"让学生学会用数学符号建立方程、 不等式、函数等表示数学问题中的数量关系和变化规 律"[11]的要求不谋而合. 考虑到八年级学生认知水平 的提升,教材编排由浅入深、循序渐进地帮助学生体 验数学建模的过程. 如"二元一次方程"选择了三个 具有代表性、现实性和综合性的探究题,在编排顺序 上遵循由易到难的原则引擎sie个问题的感息的意思。 是hts re学模型、计算求解以结果解释C检验和优化"展开,让

有趣的古算问题.易激发学生的学习兴趣.这题涉及 的等量关系比较简单,主要是让学生用二元一次方程 组,感知数学建模的基本过程.第二个问题是"增收 节支",等量关系不再直接获得,但考虑到学生的认 知实际,教材通过设置表格,帮助学生借助表格分析, 找出问题中蕴含的等量关系. 这一题重在训练学生模 型建立的能力. 第三个问题是"里程碑上的数",问题 中的数量关系较前两个而言更为复杂,教材以填空的 方式,一步步引导学生经历分析数量关系、建立方程 组、解决问题整个建模过程.

(3) 九年级数学建模过程要素呈现

考虑到九年级学生的抽象逻辑思维处于优势地 位,想象的创造性和现实性不断发展,所以九年级建 模内容更贴近现实,抽象性明显增强,对学生综合应 用能力的要求提高,建模的过程更加标准化,具体体 现在综合实践模块. 如"设计遮阳篷"就是非常典型 的数学建模问题,它来源于现实生活的需要,活动的 设计完全符合新课标对"综合与实践"的学业要求, 即项目式学习.首先,学生要能综合运用数学和其他 学科知识(如三角函数等数学知识和地理知识等). 分析出问题情境中哪些量已知、哪些量未知,并做出合 理的假设(如假设窗户的朝向等):然后,让学生经历 "真实情境数学化—建立数学模型"的过程,培养学生 将问题理想化,建立数学模型的思维习惯:最后,经历 "求解模型—得出结论、检验、反思,不断完善模型"的 过程,体会什么是数学建模以及数学建模方法.另外, 此活动开放性强,需要学生查阅资料或实地测量获得 数据,小组合作,书写调查报告,从而培养了学生的数 学建模、阅读写作和合作交流等能力.

综上所述,初中数学建模内容有以下特点,第一, 初中阶段数学建模内容以"数与代数"和"综合与实 践"为主,"图形与几何"和"概率与统计"为辅,贯穿 每个年级,具有层次性、连续性和螺旋上升的特点.第 二,问题情境以生活情境为主,贴近学生的现实生活, 并随着学生具备其他学科的知识,自然科学情境增 加,体现了跨学科特点.但是社会、环境、人文情境较 少,可在教学设计时适当增加这类情境. 问题情境多 为构造式,准真实和完全真实情境较少,这不符合课 标中要求的"学习素材应当真实可信,提供的数据可 信且具有实际含义"[12]. 另外问题类型大多是封闭 式,开放式问题极少. 总的来说,真正意义上的数学建 模问题较少. 第三, 教材中综合与实践部分的数学建 模内容呈现按"从现实问题抽象为数学问题、构建数 JUNIOR HIGH SCHOOL EDUCATION, MATHS TEACHING AND LEARNING

学生经历完整的数学建模过程,对运用数学模型解决 实际问题有了更清晰的认识. 通过"综合与实践",不 仅培养了学生的数学建模能力,还培养了学生数学 抽象能力、数学阅读能力等. 但是教材其他主线中 真正意义上的数学建模较少,学生对数学建模过程 的体验也断断续续,虽然每一章节都贯穿了数学建 模的整个过程。每一小节都会针对数学建模中的某 一子能力进行培养,但是其忽略了数学建模能力培 养的整体性. 总的来说, 初中教材中完整的数学建 模问题数量少.

二、教学建议

(一)创设类型多样的问题情境

综合考虑学生的认知发展特点、2022年版新课 标的要求和不同类型情境的功能与价值,设计出各种 类型的问题情境,适当增加人文情境,关注数学学科 发展前沿与数学文化,激发学生对数学的兴趣,培养 学生的人文底蕴:适当增加社会情境、科学情境、环境 情境等,让学生从数学的角度观察、分析、思考、表达、 解决、阐释社会生活以及科学技术中遇到的现实问 题,感受数学与科学、经济、地理、艺术等学科领域的 融合,体会数学建模的广泛应用性;增加准真实情境 和完全真实情境创设,尽量保证素材和数据的真实 性,这样有利于学生理解数学建模与现实问题之间的 联系,帮助学生形成建模观念,

(二)开发新的建模素材

善于捕捉教材中的建模素材,优化、改进原有素 材,开发出新的建模素材,建模是开放且复杂的,这是 其与数学应用题最大的区别. 开放性有利于培养学生 的发散性思维和创造性,所以教师要善于关注学生发 展的差异性,满足不同学生的需求,适当地选择教材 中的封闭式问题改编为开放性问题,全面提升学生的 数学建模能力. 但由于开放性问题通常比较复杂, 学 生解决可能存在困难,所以开放题的设计要体现层次 性,适当地引导学生自主探索,寻找解决办法.开放性 问题的提出有多种方法,但都要具有数学意义,并且 与教学主题紧密相连,能促使学生挖掘事物本质特 征,探究多种表达方式,提高数学建模方法的迁移意 识和建模能力.

(三)阶段性培养建模能力

数学建模并不是建模步骤和程序的简单呈现,它 具有鲜明的过程性和阶段性. 初中生建模能力的培养 和建模观念的形成具有连续性、阶段性和螺旋上升的 特点. 因此, 数学建模内容要抓住三大主线, 在教学中 穿插数学建模的各个过程,分步培养学生的建模子能 力,逐步渗透数学建模思想ci每nec章草的结尾最好选hts r2028/3d78ttp76//www.rdfybk.com/

取能体现整个数学建模过程的内容,并且设计相应的 数学建模活动,让学生学数学的同时用数学,体会数 学建模知识的形成过程和应用价值.

(四)提升教师建模素养

培养学生数学建模素养的前提是教师本身具有 较高的数学建模素养. 教师要能够读懂教材设计的意 图,精准把握教材中培养学生建模素养的内容,为保 证数学建模教学从平时的碎片化知识转变为完整的 数学建模知识,培养学生整体的数学建模能力,教师 可以借助"综合与实践",以模块的形式,系统地向学 生展示数学建模过程和相关知识. 但教材中的"综合 与实践"内容较少,所以教师要善于应用学生熟悉的 情境,创造出一些建模活动,帮助学生多次体验数学 建模过程,培养应用能力.

参考文献:

[1][3][10][11][12]中华人民共和国教育部. 义务教育 数学课程标准(2022 年版)[S]. 北京:北京师范大学出版社, 2022:6,10,93 - 96,6,6.

[2]中华人民共和国教育部. 义务教育数学课程标准(2011 年版)[S]. 北京:北京师范大学出版社,2012:7.

[4] 牛伟强, 张倜, 熊斌. 中国中小学数学建模研究的回顾 与反思:基于 1989 - 2016 年核心期刊文献的统计分析[J]. 数 学教育学报,2017,26(5):66-70.

- [5]王琪. 基于数学建模素养的高中数学教材分析[D]. 石 家庄:河北师范大学,2020.
- [6] Debba R. An exploration of the strategies used by grade 12 mathematical literacy learners when answering mathematical literacy examination questions based on a variety of real - life contexts [D]. University of KwaZulu - Natal, Edgewood, 2011:15 - 16.
- [7]美国数学及其应用联合会(COMAP),美国工业与应用 数学学会(SIAM). 数学建模教学与评估指南[M]. 梁贯成,赖 明治,乔中华,等译.上海:上海大学出版社,2017:17.
- [8]徐斌艳. 高中数学教科书探究内容的分析指标体系及 比较研究[J]. 课程·教材·教法,2012,32(10):35-40.
- [9]义务教育数学课程标准研制组. 义务教育教科书·数学 (八年级下册)[M]. 北京:北京师范大学出版社,2014:189-190.

【作者简介】谢雨婧,女,江苏盐城人,宁夏师范 学院数学与计算机科学学院,硕士生;韩惠丽(通讯 作者),女,河北正定人,宁夏师范学院数学与计算机 科学学院,教授,博士生导师,博士(宁夏 756000).

【原文出处】《教学与管理》:理论版(太原).